Globalization and Synchronization of Innovation Cycles

Kiminori Matsuyama, Northwestern University, USA Iryna Sushko, Institute of Mathematics, National Academy of Science of Ukraine Laura Gardini, University of Urbino, Italy

> International Trade and Macroeconomics Program NBER Summer Institute July 14, 2016

 $\ensuremath{\mathbb C}$ Kiminori Matsuyama, Globalization and Synchronization of Innovation

Introduction

Theoretical Motivation:

- How does globalization affect macro co-movements across countries?
- Most economists address this question by assuming that some *exogenous* processes drive productivity movements in each country.
- *But*, globalization (a trade cost reduction) can affect
- o productivity growth rates, as already shown by endogenous growth models
- o *synchronicity* of productivity fluctuations, as we show in an *endogenous cycle model*

Empirical Motivation:

- Countries that trade more with each other have more synchronized business cycles
 Particularly among developed countries (EU, OECD, etc)
 - Not so between developed and developing countries
- Hard to explain this "*trade-comovement puzzle*" in models with exogenous shocks
 Common shocks would cause synchronization *regardless* of the trade intensity
 - With country-specific shocks, more trade lead to *less* synchronization
 - Attempts to resolve it by global supply chains met limited success
- Easier (perhaps too easy) in models of endogenous fluctuations. No need to appeal to global supply chains.

Intuition We Want to Capture

- Two *structurally identical* countries
- Each country (in autarky) is subject to endogenous fluctuations, due to strategic complementarities in the *timing* of innovation among firms competing in the same market
- Without trade, fluctuations in the two countries are obviously disconnected.
- Trade integration makes firms based in different countries compete against each other and respond to an increasingly global (hence common) market environment.
- *Even with partial integration*, this causes an alignment of innovation incentives, *synchronizing* innovation activities and productivity fluctuations across countries

What We Do: To capture this intuition in a simplest possible manner,

- A two-country model of endogenous innovation cycles with two building blocks
- Judd (1985; sec.4) Endogenous innovation cycles due to imitation lag
- Helpman & Krugman (1985; ch.10), Home market effect/intra-industry trade between structurally identical countries with iceberg trade cost.

Conceptually, this is a study of *Synchronization of (Weakly) Coupled Oscillators*

©Kiminori Matsuyama, Globalization and Synchronization of Innovation

The Two Building Blocks

Judd (1985); Dynamic Dixit-Stiglitz monopolistic competitive model; Innovators pay fixed cost to introduce a new (horizontally differentiated) variety

Judd (Sec.2); Innovators keep their monopoly power. Unique steady state globally stable.

What if competitive fringes can imitate, but only with a lag?

- o Each variety sold initially at monopoly price; later at competitive price
- Impact of an innovation, initially muted, reach its full potential *with a delay*
- Past innovation discourages innovators more than contemporaneous innovation
- **Temporal clustering of innovation**, leading to aggregate fluctuations

Judd (*Sec.3*); *Continuous time* and monopoly lasting for $0 < T < \infty$ o *Delayed differential equation* with an infinite dimensional state space

Judd (Sec.4); also Deneckere & Judd (1992): Discrete time and one period monopoly

- **1D state space** (the measure of competitive varieties inherited from past innovation determines how saturated the market is)
- Expectations do not matter!
- Unique equilibrium path, obtained by iterating a **1D-map**

Deneckere-Judd (DJ) in a Nutshell: A Skew-Tent Map

 n_t : (Measure of) competitive varieties (per labor supply) inherited

$$n_{t+1} = f(n_t) \equiv \begin{cases} f_L(n_t) \equiv \delta(\theta + (1-\theta)n_t) & \text{if } n_t < 1\\ f_H(n_t) \equiv \delta n_t & \text{if } n_t > 1 \end{cases}$$

 $\delta \in (0,1)$, Survival rate of varieties due to obsolescence (or exogenous labor supply growth)

$$\theta \equiv \left(1 - \frac{1}{\sigma}\right)^{1 - \sigma} \in (1, e), \text{ increasing in } \sigma \text{ (EoS)}$$

Market share of a competitive variety relative to a monopolistic variety

 θ –1 > 0: the delayed impact of innovations

- Steady state (SS) globally stable for $\delta(\theta 1) < 1$
- Unstable SS; Converging to the unique 2-cycle from a.e. for $\delta^2(\theta 1) < 1 < \delta(\theta 1)$
- No stable cycle; Robust chaotic attractor for $\delta^2(\theta 1) > 1$

Helpman & Krugman (1985; Ch.10):

Trade in horizontally differentiated (Dixit-Stiglitz) goods with *iceberg trade costs* between two *structurally identical* countries; only their sizes may be different.

- In autarky, the number of firms based in each country is proportional to its size.
- As trade costs fall,
- Differentiated goods produced in the two countries mutually penetrate each other's home markets (Two-way flows of goods).
- Firm distribution becomes increasingly skewed toward the larger country (*Home Market Effect and its Magnification*)

Two Parameters: $s_1 \& \rho$ $s_1 = 1 - s_2 \in [1/2,1)$: Bigger country's share in market size $\rho = (\tau)^{1-\sigma} \in [0,1)$: Degree of Globalization: *inversely related to the iceberg cost*, $1 < \tau \le \infty$ s_n : Bigger country's share in firm distribution

©Kiminori Matsuyama, Globalization and Synchronization of Innovation

A Two-Country Model of Endogenous Innovation Cycles

Our Main Results: By combining DJ (1992) and HK (1985):

- **2D state space**: (Measures of competitive varieties in the two countries)
- Unique equilibrium path obtained by a 2D map with 4 parameters: θ, δ, s₁, ρ
 One unit of competitive varieties = θ (>1) units of monopolistic varieties
 One unit of foreign varieties = ρ (< 1) unit of domestic varieties
- For $\delta^2(\theta 1) < 1 < \delta(\theta 1)$, either *Synchronized 2-cycle* or *Asynchronized 2-cycle*
- Autarky ($\rho = 0$): Dynamics of the two countries **decoupled**. Whether synchronized or not depends entirely on how you draw the initial condition
- As trade costs fall (a higher ρ), they become more synchronized:
 - o Basin of attraction for Asynchronized 2-cycle shrinks & disappears
- Basin of attraction for Synchronized 2-cycle expands & covers the full state space Fully synchronized with partial trade integration ($\rho < 1$)
 - At a smaller ρ (i.e., at larger trade cost) with more unequal country sizes
 - Even a small size difference makes a big difference
 - The larger country sets the tempo of global innovation cycles, with the smaller country adjusting its rhythm

2D Dynamical System; $n_{t+1} = F(n_t)$ with $n_t \equiv (n_{1t}, n_{2t}) \in R_+^2$; $(0 < \delta < 1; 1 < \theta < e; 0 \le \rho < 1; 1/2 \le s_1 < 1)$

$$n_{1t+1} = \delta(\theta s_1(\rho) + (1-\theta)n_{1t}) \quad \text{if } n_t \in D_{LL} \equiv \{(n_1, n_2) \in R_+^2 | n_j \leq s_j(\rho)\}$$
$$n_{2t+1} = \delta(\theta s_2(\rho) + (1-\theta)n_{2t})$$

$$n_{1t+1} = \delta n_{1t} \qquad \text{if } n_t \in D_{HH} \equiv \{ (n_1, n_2) \in R_+^2 | n_j \ge h_j(n_k) \}$$
$$n_{2t+1} = \delta n_{2t}$$

$$\begin{split} n_{1t+1} &= \delta n_{1t} & \text{if } n_t \in D_{HL} \equiv \{ (n_1, n_2) \in R_+^2 | n_1 \ge s_1(\rho); n_2 \le h_2(n_1) \} \\ n_{2t+1} &= \delta (\theta h_2(n_{1t}) + (1-\theta) n_{2t}) & \text{if } n_t \in D_{LH} \equiv \{ (n_1, n_2) \in R_+^2 | n_1 \le h_1(n_2); n_2 \ge s_2(\rho) \} \\ n_{2t+1} &= \delta n_{2t} & \text{where } s_1(\rho) = 1 - s_2(\rho) = \min \left\{ \frac{s_1 - \rho s_2}{1 - \rho}, 1 \right\}, \quad 0.5 \le s_1 = 1 - s_2 < 1; \\ h_j(n_k) > 0 \text{ defined implicitly by } \frac{s_j}{h_j(n_k) + \rho n_k} + \frac{s_k}{h_j(n_k) + n_k/\rho} = 1. \end{split}$$

State Space & Four Domains for the Symmetric Case: $0 < \rho < s_2 / s_1 = 1$

Page 12 of 19

State Space & Four Domains for the Asymmetric Case: $0 < \rho < s_2 / s_1 < 1$

Page 13 of 19

Synchronized vs. Asynchronized 2-Cycles in Autarky: $\rho = 0$; $\delta(\theta - 1) > 1 > \delta^2(\theta - 1)$,

As a 2D-map, this system has

- An unstable steady state; (n_1^*, n_2^*)
- A pair of stable 2-cycles
 Synchronized; (n^{*}_{1L}, n^{*}_{2L}) ↔ (n^{*}_{1H}, n^{*}_{2H}), Basin of Attraction in red.
 Asynchronized; (n^{*}_{1L}, n^{*}_{2H}) ↔ (n^{*}_{1H}, n^{*}_{2I}),
 - Basin of Attraction in white

• A pair of saddle 2-cycles: $\binom{n_{1L}^*, n_2^*}{\longleftrightarrow} \leftrightarrow \binom{n_{1H}^*, n_2^*}{; (n_1^*, n_{2H}^*)} \leftrightarrow \binom{n_1^*, n_{2L}^*}{\longleftrightarrow}$ $S_1 = 0.5 \quad \theta = 2.5 \quad \delta = 0.7 \quad \rho = 0.0$

Asymmetric Synchronized & Asynchronized 2-Cycles $s_1 = 0.7$, $\theta = 2.5$; $\delta = 0.75$

 $\ensuremath{\mathbb C}$ Kiminori Matsuyama, Globalization and Synchronization of Innovation

Concluding Remarks

Summary:

- A hybrid of Judd's (1985; Sec.4) innovation cycles based on imitation lag and Helpman-Krugman (1985) home market effect/intra-industry trade with iceberg cost
- 1st two-country model of endogenous fluctuations
- Adding endogenous sources of fluctuations helps to understand "the tradecomovement puzzle."

Next Steps:

- Different Models of Endogenous Innovation Cycles:
 - *My conjecture*: Globalization should cause synchronization as long as it causes innovators based in different countries to operate in a common market environment.
 - The assumption of structural similarity seems crucial.

What if two countries are structurally dissimilar?

- Different Models of Trade: For example,
 - What if the two countries become vertically specialized?; e.g., global supply chains
 - Two Industries: Upstream & Downstream, each produces DS composite as in DJ.
 - One country has comparative advantage in U; the other in D
 - My conjecture: Globalization leads to an asynchronization

Empirically consistent, as the evidence for the synchronizing effect of trade is strong among developed countries, but *not so* btw developed and developing countries